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a b s t r a c t

A multiple-time step computational approach is presented for efficient discrete-element
modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates
are found in numerous dust and smoke contamination problems, including smoke particle
transport in the lungs, particle clogging of heat exchangers in construction vehicles, indus-
trial nanoparticle transport and filtration systems, and dust fouling of electronic systems
and MEMS components. Dust fouling of equipment is of particular concern for potential
human occupation on dusty planets, such as Mars. The discrete-element method presented
in this paper can be used for prediction of aggregate structure and breakup, for prediction
of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects
of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the
aggregate formation. After presentation of the overall computational structure, the forces
and torques acting on the particles resulting from fluid motion, particle–particle collision,
and adhesion under van der Waals forces are reviewed. The effect of various parameters of
normal collision and adhesion of two particles are examined in detail. The method is then
used to examine aggregate formation and particle clogging in pipe and channel flow.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Fluid flows containing adhesive aerosol particles occur in a wide range of natural and engineering problems. Inhaled
smoke particles with diameters ranging from 100 to 1000 nm can penetrate throughout the lungs, even down to the alveoli,
leading to numerous respiratory diseases. Dust particle clogging is a cause of frequent system maintenance in many indus-
trial systems. For instance, construction vehicles operating in dusty environments experience rapid dust clogging of the radi-
ator and other heat exchangers associated with the vehicle cooling system, leading to the need for frequent vehicle down
time. Dust fouling has long been a major maintenance concern for electronic equipment in general, where small dust par-
ticles adhering to electrical circuit boards can short out an electrical system. Similar concerns arise with MEMS systems,
which are sensitive to small amounts of contamination and provide large surface area for dust adhesion. Ability to predict
dust fouling is of particular importance for preparation for human and robotic exploration of dusty planets, such as Mars.
Production of nanoparticles is of growing interest for various industrial applications, including use in anti-abrasion coatings,
as fillers for advanced composite materials, and as coatings for advanced sensors, catalysts and battery electrodes. For flame-
generated nanoparticle production processes in particular [28], processes such as particle transport, filtration, and dispersion
all require an ability to predict aggregate formation in various fluid flows and its effect on the flow.

Computational models available for solution of flows with adhesive particles are quite varied in approach, but for the pur-
poses of this introduction these models are divided into two general classes – population-based models and discrete-ele-
ment models (DEM). Population-based models are typified by the Smoluchowski population balance equation [37], or
. All rights reserved.
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Nomenclature

Roman letters
a radius of contact region
a0 equilibrium contact region radius (Eq. (38))
An amplitude of particle cloud n (Eq. (14))
b constant (ffi2.283)
bn,i body force on grid cell i of fluid due to particle n (Eq. (12))
C particle concentration field
cbulk bulk (or average) concentration
cM added mass coefficient (1/2 for a sphere)
C constant (Eq. (50))
d particle diameter
E coefficient of restitution (Eq. (51))
E effective elastic modulus of colliding particles (Eq. (16))
Ep particle Young’s modulus
F friction factor
f(�,�) weighting function for particle cloud
f1, f2, f3 time step constants (less than unity)
Fa added mass force
FA collision and adhesive force on particle
Fb Basset history force
Fcrit critical sliding force
FC maximum particle adhesive force (Eq. (41))
Fd fluid drag force on particle
FF fluid force on particle
Fg reduced gravitational force
F‘ fluid lift force on particle
Fm Magnus force
Fn normal collision/adhesion force
Fnd dissipative part of normal collision/adhesion force
Fne elastic part of normal collision/adhesion force (Eq. (18))
Fp pressure gradient force
Fs sliding force
G reduced gravitational acceleration
G effective shear modulus of colliding particles (Eq. (16))
Gn shear modulus of particle n
I particle moment of inertia (md2/10)
kN elastic stiffness (Eq. (20))
kR rolling stiffness
kQ torsional stiffness coefficient (Eq. (31))
kT tangential stiffness coefficient (Eq. (27))
K stiffness coefficient (Eq. (21))
L fluid characteristic length scale
m particle mass
MA collision and adhesive moment on particle
MF fluid moment on particle (Eq. (1))
Mr rolling torque on particle (Eq. (35))
Mt twisting torque on particle
Mt,crit critical twisting torque (Eq. (32))
N unit normal connecting the centroids of two particles
nPA aggregate size
�nCP average number of particles in a collision
N number of particles
Na(�) number of particles contained in an aggregate of a given size
NA number of aggregates
NCP total number of particles involved in collisions
rn radius of particle n
ri vector from particle centroid to contact point (rin)
R effective radius of colliding particles (Eq. (16))
Rn radius of particle cloud n
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ReF fluid Reynolds number (qfLU/l)
ReP particle Reynolds number (jv � ujd/m)
S dimensionless shear parameter (xL2/m)
St Stokes number (qpd2U/18lL)
t time
tR direction of particle rolling velocity (vL /jvLj)
tS direction of particle sliding velocity (vS /jvSj)
TAP particle aerodynamic time scale (TFSt)
TC particle collision time scale (d q2

p=E2
pU

� �1=5
Þ

TCP particle convective time scale (d/U)
TF fluid convective time scale (L/U)
TP particle time scale (min(TAP,TCP))
U fluid velocity at particle location
U fluid characteristic velocity scale
v particle velocity
vC particle surface velocity at contact point
vL particle rolling velocity (Eq. (34))
vR particle relative velocity at contact point
vS particle slide velocity (Eq. (26))
Vi volume of sub-grid cell opposite to node i(Fig. 2)
V grid cell volume
W collision rate (dd/dt)
w0 measure of particle relative collision velocity
X position vector
xn centroid position of particle n

Greek letters
a coefficient of friction (Eq. (23))
aL coefficient of the lift force (jxjd/(2jv � uj))
b exponent given by Eq. (4)
v fluid-to-particle density ratio (qf/qp)
dC overlap at critical adhesive force (Eq. (41))
dN normal overlap of particles (Eq. (17))
Dt fluid time step
DtC collision time step
DtP particle time step
Dt fluid time step
e dimensionless particle diameter (d/L)
/ dimensionless adhesion coefficient (Eq. (55))
c adhesion surface potential
gN normal dissipation coefficient (Eq. (22))
gR rolling dissipation coefficient
gQ torsional dissipation coefficient (Eq. (31))
k elasticity parameter (Eq. (55))
l fluid viscosity
lf friction coefficient
lR rolling coefficient (Eq. (37))
m fluid kinematic viscosity (l/qf)
hcrit critical angular displacement due to rolling (ncrit/R)
qf, qp fluid and particle densities
rn Poisson’s ratio of particle n
x vorticity magnitude
x fluid vorticity at particle location
X angular rotation rate of particle
XT relative twisting rate (Eq. (28))
n displacement of particle centroid due to rolling (Eq. (44))
ncrit critical rolling displacement

Mathematical operators
d/dt derivative following particle
D/Dt derivative following fluid-particle (usual material derivative)
r del operator
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Superscripts

ˆ dimensionless (Eq. (46))
* transformed (Eq. (48))
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later variants of this equation [6,19,44], which relates the rate of change of the number of aggregates of a certain size, ni, to
various effects that lead to generation or elimination of aggregates of size ni, resulting from aggregate collision and breakup
processes. Expressions for each of these source/sink terms are developed using either deterministic physical models [37] or
statistical arguments, such as those based on extensions of kinetic theory to granular media [23]. Population balance ap-
proaches have been sufficiently refined to provide reasonably accurate prediction of aggregate size distribution in different
types of flow fields, but they cannot yield predictions of the micromechanics and microstructure of the aggregates or of their
interactions with each other and with immersed surfaces in the flow. Of particular interest are situations where the flow
length scale may approach the aggregate size and situations where aggregates become attached to solid surfaces in the flow,
such as a channel wall or a fiber. Both of these types of situations are common in microfluidic flows.

The second general approach for simulation of adhesive particle flows is discrete-element models (DEM), wherein the
transport and interactions of each particle are computationally followed. Discrete-element models have been used exten-
sively for large-size particles, where adhesion effects are negligible, as well as for nanoscale particles, in which the particle
size is compatible with the adhesion length scales, so the molecular dynamics approach can be directly applied. In between
these two extremes is found a regime involving particles with diameter d much larger than the adhesion length scale but still
small enough to exhibit significant particle adhesion, which for dry aerosols corresponds roughly to 0.1 lm < d < 100 lm.
Computational models for particles in this range exhibit high stiffness, due to the large difference between the several time
scales involved in the problem, ranging from the fluid advection time at the upper end to the time associated with particle
adhesion forces at the lower end. A second challenge for models of this sort is the necessity to include in the computational
model a wide range of forces and torques acting on the particles, due to both fluid flow and to collision events. Among the
latter include the elastic and dissipative normal forces and the resistance from particle sliding, twisting and rolling motions.
Many of the collision forces and torques are significantly affected by the adhesive force. In development of discrete-element
models for adhesive particles, both the physical and computational modeling issues must be accounted for in tandem, since
in many cases models exist for these various forces which, while accurate, would not be computational feasible for large
numbers of particles. At the same time, the interests of computational efficiency leads some studies of adhesive particle
flows to neglect effects, such as rolling resistance, which play a critical role in the aggregate dynamics and breakup.

An early DEM study for adhesive particle flows is presented by Mikami et al. [30], who consider cohesive powders subject
to liquid bridging force. Dominik and Tielens [13] present a DEM with van der Waals forces [42], which they use to examine
impact of ice particles in space. Many of these previous DEM studies for adhesive particle flows report results only for two-
dimensional flows and with relatively small number of particles, due in large part to the time step restriction caused by the
stiffness of the governing equations for particle adhesion force. One option to partially circumvent the problem of a small
time step was proposed by Weber et al. [43], who replace the van der Waals potential with a square-well potential and
use a hard-sphere model for the particle collisions, in which particles collide both with their respective surfaces and with
the outer surface of the cohesive energy well surrounding each particle. The minimum time step for this method is on
the order of the time required for the particle surface to cross the thickness of the adhesive energy well.

The present paper presents a computational discrete-element model for efficient, physically-accurate evolution of partic-
ulate aerosol flows with micron-size particles. The model involves both physical and computational modeling components,
which are developed to be true to the physics of collision- and fluid-induced forces and torques acting on the particles, while
at the same time consistent with the demands of rapid computation for large numbers of particles. The method is presented
for small particles immersed in a fluid flow subject to van der Waals adhesive forces, but it has been extended in on-going
work for other adhesive forces, including liquid bridging and ligand-receptor bonding. Computationally efficient models for
the various forces and torques on the particles due to fluid flow effects and to collision and adhesion with other particles are
critically reviewed. The model is then applied to examine aggregate formation for pipe and channel flows subject to different
conditions, with investigations focusing on the role of the channel walls on particle capture and the aggregate formation
process.

The structure of the computational algorithm is described in Section 2. Fluid-particle coupling is described in Section 3.
The particle forces and torques resulting from collisions are reviewed in Section 4, including normal impact force and resis-
tance for sliding, twisting and rolling motions. Modifications to the collision forces and torques arising from van der Waals
adhesion are discussed in Section 5. The behavior of the computational model is examined for two particle collisions in Sec-
tion 6. The method is applied in Section 7 to examine the process of particle aggregate formation in pipe and channel flows.
Conclusions are given in Section 8.

2. Structure of computational model

In a discrete-element method, the particle velocity v and rotation rate X are obtained by solution of the particle linear
and angular momentum equations, given by
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m
dv
dt
¼ FF þ FA; I

dX
dt
¼MF þMA ð1Þ
where m is the particle mass, d is the particle diameter, I = (1/10)md2 is the particle momentum of inertia, and d/dt is the
derivative following a moving particle. The forces acting on the particle are the fluid force (FF) and the elastic collision force
and van der Waals adhesion force, which are together denoted as FA. In the angular momentum equation, MF and MA denote
the corresponding fluid torque and the sum of the collision and van der Waals adhesion torques on the particle. While for
dilute particle flows it is common to only compute particle translation, for colliding particles the rotation rate has a strong
effect on the tangential particle forces. Formation of particle aggregates is found to be particularly sensitive to accurate evo-
lution of the particle rotation rate.

The particle transport calculation exhibits a number of different time scales. Typically the largest time scale is that
associated with the fluid flow. If L and U denote characteristic macroscopic length and velocity scales of the flow field
and d denotes the typical particle diameter, the convection time scales of the fluid and the particles, TF = L/U and TCP = d/U,
are referred to here as the fluid time scale and the particle convective time scale. An alternative particle time scale is given
by the particle aerodynamic response time, TAP � TFSt, where the Stokes number St is defined by St � qpd2U/18 lL =
e2ReF/(18v). Here v � qf/qp is the fluid-to-particle phase density ratio, e � d/L is the dimensionless particle diameter, and
ReF � qf LU/l is the fluid macroscopic Reynolds number. Resolution of the particle response to fluid forces requires that
the computation resolve the particle motion on the aerodynamic time scale, whereas identification and resolution of particle
collisions requires that the particle motion be resolved on the particle convective time scale. We therefore set the particle
time scale TP = min(TCP, TAP). The time scale that characterizes the elastic response of a particle when it collides with another

particle, called the collision time scale, is given by TC ¼ d q2
p=E2

pU
� �1=5

, where Ep is the particle Young’s modulus [41].

As a typical example, we consider dust particles in air. For dust particle diameter of 10 lm, density ratio of v ffi 4 � 10�4,
and fluid length and velocity scales of 1 cm and 1 m/s, respectively, the corresponding Stokes number is St = 0.1. The fluid
time scale is TF ffi 0.01 s, and the particle convective and aerodynamic time scales are TCP ffi 10�5 s and TAP ffi 10�3 s, respec-
tively. Setting TP = TCP, we obtain the particle-to-fluid time scale ratio as TP/TF = 0.001. Using an elastic modulus for quartz of
Ep ffi 70 GPa, the collision time scale is obtained as TC ffi 10�8 s, giving TC/TP = 0.001, or six orders of magnitude difference be-
tween the fluid and collision time scales.

The computational structure is designed with a multiple-time step framework, such that the different computational
tasks are performed with different frequencies depending on the time scale with which they change. Three of the major com-
putational tasks are listed below:

(A) Fluid flow calculation: If the fluid flow is unsteady, we need to advance the flow field in time in order to compute the
fluid forces on the particles. A two-way interaction approach is employed that accounts for particle forces on the fluid
flow using a distributed body force, which is obtained by an averaging procedure over the particles.

(B) Local list formation: Many computational operations require calculation of the interaction of a particle with neighbor-
ing particles, including particle–particle collision and adhesion forces and modification of drag force due to particle
crowding. To facilitate such calculations, we store a list for each particle identifying neighboring particles, referred
to as the ‘‘local list”. Local list formation is accelerated by first sorting the particles into a Cartesian grid, with grid size
set equal to the typical search radius for the local list. The local list for each particle is determined by sorting particles
in the grid cell containing the given particle and from particles in neighboring grid cells, taking into account periodic
boundary conditions where appropriate. For later convenience, the local list of each particle is sorted using a heapsort
algorithm such that the closest particles are listed first.

(C) Fluid forces on particles: Computation of the fluid forces acting on a particle requires knowledge of the fluid velocity at
the particle center location, which must be obtained from interpolation from the grid used to store the fluid variables.
The fluid force on a particle changes due both to change in the flow field and change in the particle location.

(D) Identification of colliding particles: It is useful to identify particle pairs that have collided during the time step in order
to account for collision forces on these particles.

(E) Collision and adhesion forces on particles: We employ a ‘‘soft-sphere” approach popular in the granular flow literature
(e.g., [41]) to compute the forces on each particle due to collision with nearby particles or container walls. As described
in Section 5, the collision forces are modified here to account for the particle adhesion force.

The computation is performed using three distinct time steps listed below:
Fluid Time Step : Dt ¼ f1TF ;

Particle Time Step : Dtp ¼ f2TP;

Collision Time Step : DtC ¼ f3TC ;
where f1, f2, f3 are constants with values much less than unity. Because the time scales associated with the problem are so
different, we perform the different computational tasks listed above with a frequency associated with one of these time
scales. A flow chart indicating the structure of the computational scheme is given in Fig. 1. The local list construction, which



Fig. 1. Flow chart showing the structure of the computational algorithm, indicating major tasks that are performed on each of the three time steps. The
most time-consuming tasks are enclosed in a rectangle, moderately timer-consuming tasks are enclosed in a hexagon, and less time-consuming tasks are
enclosed in an oval.
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tends to be time-consuming, is performed on the frequency of the fluid time scale. This list must therefore be made suffi-
ciently large to encompass the different neighboring particles that each particle will see as it is advected over the time step
Dt, but not so large as to lead to excessive computational time or storage requirements. Calculation of the fluid force on the
particles is performed at the frequency of the particle time step, due to the need to account for the change in these forces as
the particles move. We also store all previous particle collisions from the last time step into an array for each particle, and
then add to this array an estimate of any new collisions that will occur during the particle time step. Particles that do not
collide during the particle time step are advected with time step DtP. Particles that do collide during the particle time step
are advected instead with the smaller collision time step DtC in order to properly account for the more rapid time variation of
the collision and adhesion forces on the particle.

3. Fluid forces and torques

Fluid forces on the particles include drag, lift, pressure gradient (or buoyancy), gravity, added mass force, and Magnus
force. The particle Reynolds number, ReP � jv � ujd/m where u is the fluid velocity at the particle location and m = l/qf is
the fluid kinematic viscosity, and the dimensionless particle diameter e � d/L are both assumed to be much smaller than
unity.

For small particles, the dominant fluid force is usually the drag force Fd, given by
Fd ¼ �3pdlðv � uÞf : ð2Þ
The Stokes drag solution for an isolated sphere is recovered for friction factor f = 1. The correlation of Di Felice [11] is used to
correct friction factor to account for particle crowding in non-dilute flows, giving
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f ¼ ð1� cÞ�b
; ð3Þ
where c(x,t) is the local particle concentration (i.e., the ratio of the particle volume to the fluid volume in a small region
around the particle) and b is given by
b ¼ 3:7� 0:65 exp �1
2
½1:5� lnðRePÞ�2

� �
: ð4Þ
The reduced gravity force Fg is
Fg ¼ mð1� vÞg; ð5Þ
where g is the gravitational acceleration vector. The gravity force is important even for small particles over sufficiently long
time periods, unless the particle size is so small that the particles can be suspended indefinitely by Brownian motion. The
pressure gradient force Fp, due to the acceleration of the external flow past the particle, is
Fp ¼ vm
Du
Dt

; ð6Þ
where D/Dt denotes the rate of change with time following a fluid particle, such that
Du
Dt
¼ du

dt
� ½ðv � uÞ � r�u: ð7Þ
The added mass force Fa is given by
Fa ¼ �cMvm
dv
dt
� du

dt

� �
; ð8Þ
where the added mass coefficient for a sphere is cM = 1/2. The ratio Fp(or Fa)/Fd � O(v), so these forces are generally small
when the particle density is much greater than the fluid density.

A particle placed in a shear flow exhibits a lift force F‘ in the direction normal to the direction of the flow. If the particle is
assumed to rotate at the same rate as the local rotation rate of fluid particles, the lift force solution of Saffman [33,34] can be
written as
F‘ ¼ �2:18vm
ðv � uÞ � x

Re1=2
P a1=2

L

; ð9Þ
where aL � jxjd/ (2jv � uj). The ratio F‘/Fd = O(e S1/2), where S �xL2/m is a dimensionless shear parameter. For small particles
(e	 1), the lift force is generally small compared to drag except in regions of very large vorticity. We note that the Basset
history force Fb is neglected in this model since for small particles the ratio of Basset force to drag scales as Fb=Fd ffi Re1=2

p 	 1.
A detailed discussion of the effects of Basset force on particle motion is given by Druzhinin and Ostrovsky [14].

When the particle rotation rate differs from that of the surrounding fluid, an additional force (called the Magnus force) is
exerted on the particles, given by
Fm ¼ �
3
4
vm

1
2

x�X

� �
� ðv � uÞ: ð10Þ
Assuming that the differential rotation occurs through the particle inertia under the fluid-induced torque, and using the scal-
ing jv � uj/U = O(St) developed by Crowe et al. [9], the ratio of Magnus force to drag is given by Fm/Fd = O(eS St). Particle col-
lision in the presence of sliding resistance leads to much larger relative rotation rate between the particle and surrounding
fluid, so that the Magnus force is typically greater than this estimate in the presence of collisions. The corresponding torque
on the particle due to local fluid rotation is given by [9]
MF ¼ pld3 1
2

x�X

� �
: ð11Þ
In additional to the forces listed above, it often necessary to include a random force acting on the particles. For very small
particles (less than a micron diameter), this random force results from the Brownian motion induced by individual molecular
collisions with the particle. For turbulent flows, a random force is often used to model effects of sub-grid-scale turbulence on
dispersion of the particles. A review of random force models for particulate flows is given by Crowe et al. [9].

The particles exert a body force on the fluid flow, which must be accounted for cases with significant particle mass load-
ing [9]. This body force is computed by determining the fluid grid cell in which each particle lies and distributing the force –
(FF � Fg)n on the fluid imposed by particle n onto the surrounding grid nodal points by the equation
bn;i ¼ �ðFF � FgÞnðVi=VÞ: ð12Þ
where Vi is the volume of the sub-grid cell opposite to node i, as shown in Fig. 2, and V is the total grid cell volume. The value
of the body force at grid i is obtained by summing over the contributions from all particles contained in grid cells connected
to node i. The Navier–Stokes equations are modified by the presence of two-way coupling with the particulate phase as



1 2

3 4

5 6

7 8

V1

Fig. 2. Schematic illustrating the volume partitioning used to distribute particle forces onto the fluid grid. The volume V1 opposite node 1 is shaded in gray.
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o

ot
ðcvqf Þ þ r � ðcvqf uÞ ¼ 0 ð13aÞ

o

ot
ðcvqf uiÞ þ

o

oxj
ðcvqf uiujÞ ¼

o

oxj
cvl

oui

oxj
þ ouj

oxi

� �� �
� cv

op
oxi
� bi: ð13bÞ
where cv � 1-c is the voidage fraction.
The particle concentration field is used both in the Navier–Stokes equation (13) and in the correction (3) to the drag force,

as well as in post-processing. Particle concentration can be obtained by counting the number of particles in each fluid grid
cell; however, this approach tends to be noisy, particularly as the grid increment is made progressively smaller. We employ
an alternative method for computing particle concentration using a variant of the particle cloud approach [29]. In this ap-
proach, we let the contribution to the continuous particle concentration field from each particle be distributed as a ‘‘cloud”
around the particle center location as determined by a weighting function f(x � xn,Rn), such that the integral of f over all
space equals unity and Rn is a length scale called the cloud radius. We choose a Gaussian function for f of the form
f ðx� xn;RnÞ ¼
2

3pR3
n

exp½�jx� xnj2=R2
n�: ð14Þ
The concentration c(x,t) at a point x is obtained by summing over the contributions of the nearby particle clouds as
cðx; tÞ ¼
XN

n¼1

Anf ðx� xn;RnÞ; ð15Þ
where the cloud amplitude An and cloud radius Rn are held constant for each computational particle. The cloud amplitude is
equal to the particle volume, or An ¼ ðp=6Þd3

n , such that the integral of the concentration field over all space equals the sum of
all the particle amplitudes, or the total volume occupied by the particles.

4. Collision forces with no adhesion

The forces and torques acting on the particles are decomposed into four parts: that acting along the line normal to the
particles centers and the resistance from sliding, twisting, and rolling of one particle over another (Fig. 3). The normal force
acts in the direction of the unit vector n which points tangent to the line connecting the centers of the two particles, denoted
by i and j, such that n = (xj � xi)/jxj � xij. Since for spherical particles the normal force acts in the direction n passing through
the particle centroids, it exerts no torque on the particles. The sliding resistance acts in a direction tS, corresponding to the
direction of relative motion of the particle surfaces at the contact point projected onto the contact plane (the plane orthog-
onal to n). The sliding resistance also imposes a torque on the particle in the n � tS direction. The twisting resistance exerts a
moment on the particle in the n direction, normal to the contact plane. The rolling resistance exerts a torque on the particle
in the tR � n direction, where tR is the direction of the ‘‘rolling” velocity, which we define later in this section. The total col-
lision and adhesion force and torque fields on particle i can then be written as
FA ¼ Fnnþ FstS; MA ¼ riFsðn� tSÞ þMrðtR � nÞ þMtn; ð16Þ
where ri is the radius of particle i.

4.1. Normal force

The normal force (Fn) is composed of the sum of a part (Fne) due to the elastic deformation of the particles and a second
part (Fnd) due to energy losses during the normal particle impact, which for small relative particle speeds result mainly from
elastic wave propagation on the particles [21]. We consider two particles with radii ri and rj, elastic moduli Ei and Ej, Poisson



a b c d e
Fig. 3. Modes of particle interaction: (a) normal impact, (b) necking in normal extension, (c) shearing, (d) twisting, and (e) rolling.
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ratios ri and rj, and shear moduli Gi = Ei /2(1 + ri) and Gj = Ej/2(1 + rj). An effective particle radius R and effective elastic and
shear moduli E and G are defined by
1
R
� 1

ri
þ 1

rj
;

1
E
� 1� r2

i

Ei
þ

1� r2
j

Ej
;

1
G
� 2� ri

Gi
þ 2� rj

Gj
: ð17Þ
The particle normal overlap dN is defined by
dN ¼ ri þ rj � xi � xj

�� ��; ð18Þ
where xi and xj denote the centroid positions of the two particles. Expressions for the elastic response Fne and the radius a(t)
of the flattened contact region was obtained in the classic paper by Hertz [17] as
Fne ¼ �kNdN ¼ �Kd3=2
N ; ð19Þ
and
a2 ¼ RdN: ð20Þ
The elastic stiffness kN can be expressed in terms of the contact region radius as
kN ¼
4
3

EaðtÞ; ð21Þ
such that the stiffness coefficient K is given by
K ¼ 4
3

E
ffiffiffi
R
p

: ð22Þ
The dissipation force Fnd is given by
Fnd ¼ �gNvR � n; ð23Þ
where vC,i = vi + Xi � ri is the surface velocity of particle i at the contact point, ri = rin and rj = � rjn are the vectors from the
particle centroids to the contact point, vR = vCi � vCj is the relative particle surface velocity at the contact point, and gN is the
normal friction coefficient. Cundall and Strack [10] and Tsuji et al. [41] propose expressions for gN in which gN / (mkN)1/2,
where kN = Fne/dN is the normal stiffness coefficient. Tsuji et al. [41] propose that the damping coefficient is related to the
coefficient of restitution if gN is assumed to have the form
gN ¼ aðmkNÞ1=2
; ð24Þ
where a is a coefficient of friction that is written as a function of the restitution coefficient of the particles (see Section 7).
Other expressions for gN have also been proposed. For instance, Brilliantov et al. [5] examine the damping produced by col-
lisions of two viscoelastic particles and propose an expression for normal damping coefficient where gN / a, whereas sub-
stitution of (21) into (24) gives gN / a1/2. Since most of the literature on normal particle collision reports results in terms
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of the restitution coefficient, it is often convenient to use the expression (24) for gN and then account for effects such as vis-
cous fluid damping [3] and material viscoelastic or wave propagation losses through modification of the restitution coeffi-
cient. For the small particles in the size range under consideration in this paper, most of the dissipation is due to fluid friction
within the lubrication layer separating the particles, where the Stokes number is sufficiently low that the restitution coef-
ficient is effectively zero.

4.2. Sliding resistance

We adopt a spring-dashpot-slider model for the sliding resistance proposed by Cundall and Strack [10], which is shown
schematically in Fig. 4. In this model, the tangential sliding force Fs is first absorbed by the spring and dashpot until its mag-
nitude reaches a critical value Fcrit = lfjFnj. The friction coefficient lf has a typical value of about 0.3 for dry surfaces, but can
be substantially reduced by the presence of the fluid within the contact region, particularly for smooth particle surfaces.
If j Fsj > Fcrit, then the particle surfaces will slip (as represented by the slider in Fig. 4) and the friction coefficient will be given
by the modified Amonton friction expression
Fs ¼ �Fcrit: ð25Þ
For the subcritical case jFsj < Fcrit, the sliding resistance due to the spring and dashpot for particle i yields [8,41]
Fs ¼ �kT

Z t

t0

vSðnÞdn

� �
� tS � gTvS � tS; ð26Þ
where the slip velocity vS(t) is the tangent projection of vR to the particle surface at the contact point, or
vS ¼ vR � ðvR � nÞn ð27Þ
and the slip direction is tS = vS/jvS j. The first term on the right-hand side of (26) is an elastic spring and the second term is
viscous friction. The time integral in the first term gives the tangential elastic displacement of the material before slipping
sets in, where t0 is the time of initial particle impact.

An expression for the tangential stiffness coefficient kT is derived by Mindlin [31]. Rewriting this expression in terms of
the contact region radius a(t) gives
kT ¼ 8GaðtÞ: ð28Þ
Tsuji et al. [41] assume that the tangential dissipation coefficient is of the same order as the normal viscous damping coef-
ficient, so that lacking further information they set gT = gN. Other investigators in granular flows omit the last term in (26),
which reduces to the common stick-slip friction model.

4.3. Twisting resistance

Twisting occurs when the two colliding particles have different rotation rate in the direction n (Fig. 3(d)). The relative
twisting rate XT is defined by
XT ¼ ðXi �XjÞ � n; ð29Þ
In analogy to the friction model (26) used for sliding, we propose a twisting resistance expression of the form
Mt ¼ �kQ

Z t

t0

XTðsÞds� gQ XT : ð30Þ
N

S

N

S

Fig. 4. Spring-dashpot-slider schematic for Cundall–Strack friction model between two colliding particles.
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Here the time integral represents the angular displacement prior to torsional sliding. The expression (30) can be derived
from (26) by integrating the friction stress Fs/pa2 over the contact area with relative velocity vR = rXR oriented in the azi-
muthal direction, giving
Fig. 5.
passes
Mt ¼
2
a2

Z a

0
FsðrÞr2dr ¼ � kT a2

2

Z t

t0

XTðsÞds�
gT a2

2
XT : ð31Þ
Comparing (30) and (31) yields the torsional stiffness and friction coefficients as
kQ ¼ kT a2=2; gQ ¼ gT a2=2: ð32Þ
The particles will begin to spin relative to each other when the torque exceeds a critical value. The critical torque can be
derived by integrating the moment Fcritr/pa2 due to the critical sliding stress over the contact region, yielding
Mt;crit ¼
2
3

aFcrit: ð33Þ
When jMtj > Mt,crit, the torsional resistance is given by
Mt ¼ �Mt;critXT= XTj j: ð34Þ
4.4. Rolling resistance

Several computational and experimental studies have pointed out that rolling, rather than slipping or twisting, is the pri-
mary micro-deformational mechanism in granular flows with small particle sizes [2,20,32]. Rolling is related to the change in
position of the particle–particle contact point due to the particle rotation. The particles are simultaneously undergoing sev-
eral different motions, including sliding, twist, and solid-body rotation of the particle aggregate, in addition to rolling, and
there are several different ways that the rolling motion has been defined in the literature as distinct from these other mo-
tions. A discussion of four different definitions of rolling and of the effect of rolling motion on granular particle dynamics is
given by Kuhn and Bagi [26].

An expression for the rolling displacement of arbitrary-shaped particles is derived by Bati and Kuhn [1] which is objective,
such that the rolling velocity is independent of the reference frame in which it is measured. This property is important in part
to ensure that the rolling motion is independent of solid-body rotation of the particle aggregate. Taking the rate of this
expression and specializing to spherical particles yields an equation for the ‘‘rolling velocity” vL of particle i as
vL ¼ �RðXi �XjÞ � n� 1
2

rj � ri

rj þ ri

� �
vS: ð35Þ
The first term is the velocity due to the difference in rotation rate of the particles projected onto the plane orthogonal to n.
The last term accounts for the effect of different particle size on rolling velocity. This definition reduces to that of Iwashita
and Oda [20] when applied to a circular disk. We define the direction of rolling as tR = vL/jvLj, as shown in Fig. 5.

Following Iwashita and Oda [20], an expression for the rolling resistance torque Mr is postulated in the form of a rota-
tional spring, dashpot, and slider system, as shown in Fig. 6, giving
Mr ¼ �kR

Z t

t0

vLðsÞds
� �

� tR � gRvL � tR: ð36Þ
Ω i Ω j

L

n

Schematic showing asymmetry of the contact region between two spheres in a rolling motion in the presence of adhesive force. The dashed line
through the particle centroids. The lines with the open arrows indicate the direction of normal particle motion during rolling.
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Fig. 6. Rotational spring-dashpot-slider system used for Iwashita-Oda rolling resistance torque model.
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The first term on the right-hand side of (36) represents the spring force, where the time integral is the rolling displacement.
The second term in (36) is a viscous resistance to rolling. The rolling torque is given by (36) for jMrj less than a critical value
Mr,crit, beyond which Mr = �Mr,crit.

A number of different factors give rise to rolling resistance. Johnson [21] lists micro-slip, inelastic particle deformation,
and surface irregularities all as possible contributing factors to rolling resistance in various situations. For spheres rolling
on flat surfaces or on other spheres, Tabor [38] demonstrates that the rolling resistance primarily arises from elastic hyster-
esis. Iwashita and Oda [20] assume that the rolling stiffness and the sliding stiffness are of the same order of magnitude, or
kR0 = O(rikT). Brilliantov and Pöschel [4] argue that rolling can be treated as a continuous series of normal displacements of
the particle, as indicated schematically by the open arrows in Fig. 5. Based on this argument, they develop a model for rolling
dissipation parameter using their model for normal dissipation coefficient of a viscoelastic material [5] which yields an
expression for gR of the form
gR ¼ lR Fnej j; ð37Þ
The rolling coefficient lR is related to the coefficient of restitution e by
lR ¼
1� e

bw1=5
0 ðK=mÞ2=5

; ð38Þ
where the constant b is given by b ffi 2.283 and w0 is a measure of the relative normal velocity between the particles prior to
collision.

5. Modifications due to van der Waals Adhesion

Following the approach of Johnson et al. [22], we assume that van der Waals adhesive force acts only within the flattened
contact region. The separation of the particles is further assumed to remain constant within this contact region, so that the
adhesive force can be described using a surface potential c, defined such that 2pca2 is the work that needs to be performed to
separate the surfaces if the particles are treated as rigid bodies.

5.1. Normal force

For very slow particle impact velocities and with no fluid forces, the two particles approach an equilibrium state in which
the elastic repulsion is balanced by the adhesive attraction of the particles. In this equilibrium state, the radius a(t) of the
contact region is given by
a0 ¼
9pcR2

E

 !1=3

: ð39Þ
The expressions (19) and (20) for contact region radius and elastic rebound force Fne are modified in the presence of van der
Waals force, and can be written as [7,22]
Fne

FC
¼ 4

a
a0

� �3

� 4
a
a0

� �3=2

ð40Þ
and
dN

dC
¼ 61=3 2

a
a0

� �2

� 4
3

a
a0

� �1=2
" #

: ð41Þ
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In these equations, the critical force and overlap, FC and dC, are given by
FC ¼ 3pcR; dC ¼
a2

0

2ð6Þ1=3R
: ð42Þ
The force Fne is defined to be positive when it pushes the two particles toward each other. As the two particles move away
from each other due to an applied stretching from the fluid or the particle inertial force, contact will be maintained even for
negative values of dN via necking of the particle material (Fig. 3(b)), until the critical point is reached, at which Fne = � FC and
dN = �dC. As the particles are pulled further apart, the contact will suddenly break. To minimize the computational time, we
pre-compute Fne/FC and a/a0 as functions of dN /dC at the beginning of the calculation, and then use a look-up table to deter-
mine Fne and a(t) for the given value of dN at each time step. By writing kN in terms of the contact region radius a in (21),
rather than the more traditional form in terms of the overlap dN, we can use the same expressions (23) and (24) for the nor-
mal dissipation force as used for cases with no adhesion.

5.2. Sliding and twisting resistance

The effect of van der Waals adhesion on tangential sliding force was examined by Savkoor and Briggs [35], and a simpli-
fied model was proposed by Thornton [39] and Thornton and Yin [40]. Sliding is relatively rare for adhesive particles due to
their small momentum, and it is of importance mainly in cases where an aggregate is torn apart by a fluid shear of by adhe-
sion to another aggregate. To save computational time, we therefore adopt a simplified sliding resistance model proposed by
Thorton [39], which was found to agree reasonably well with experimental data. This simplified approach uses the same
expressions (25) and (28) that were developed for the case with no adhesive force, but replaces the critical sliding force by
Fcrit ¼ lf Fne þ 2FCj j; ð43Þ
where FC is given in (42). The addition of the 2FC term in (43) is necessary to ensure that the critical tangential force ap-
proaches lfFC at the critical point when the particles are just about to separate. Similarly, the twisting resistance has the
same form described in Section 4, but with the critical torque replaced by
Mt;crit ¼
2
3
lf a FN þ 2FCj j: ð44Þ
5.3. Rolling resistance

The van der Waals adhesion force leads to an additional mechanism for rolling resistance by inducing an asymmetry in
the contact region, as shown in Fig. 5, due to the pulling apart of the particles surfaces on one side of the contact point and
the pushing together of the particle surfaces on the other side. An expression for the torque induced by this adhesion-in-
duced asymmetry is derived by Dominik and Tielens [12] as
Mr ¼ �4FCða=a0Þ3=2n; ð45Þ
where n is the displacement of the particle centroid due to rolling in the tR direction, given by the time integral in (31). Dom-
inik and Tielens [12] further argue that the critical resistance occurs when the rolling displacement n achieves a critical value,
corresponding to a critical rolling angle hcrit = ncrit/R. For n > ncrit, the rolling displacement n in (45) is replaced by ncrit.

6. Two particle collisions

We consider two particles located at time t = 0 at positions x = ± x0 and with velocities dx/dt = ± v0, such that the particles
are traveling directly toward each other and not touching at the initial time. The particles have the same radius r1 and elastic
modulus E1.

6.1. Normal collision with no adhesion

We initially assume that there are no adhesive or fluid forces acting between the particles. The particle position ±x(t) var-
ies linearly in time as x(t) = �x0 + v0t until the particles collide with each other. Following collision, the particle inertia is re-
sisted by the elastic and dissipative normal collision forces, giving an equation for the overlap d � dN = 2(r1 � x) as
d2d

dt2 þ 2a
K
m

� �1=2

d1=4 dd
dt
þ 2

K
m

� �
d3=2 ¼ 0: ð46Þ
Defining a dimensionless time and overlap by
t̂ ¼ t r1=2
1 K=m

� �1=2
; d̂ ¼ d=r1; ð47Þ
(46) becomes
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d2d̂

dt̂2
þ 2ad̂1=4 dd̂

dt̂
þ 2d̂3=2 ¼ 0: ð48Þ
Eq. (48) is invariant to a transformation of the form
d
 ¼ Cd̂; t
 ¼ t̂=C1=4 ð49Þ
for any constant C. The collision rate w is defined by w � dd/dt, such that applying (47) and (49) gives
w ¼ ðr5=2
1 K=mÞ1=2ŵ ¼ C�5=4ðr5=2

1 K=mÞ1=2w
: ð50Þ
If w0 � w(0) is the initial collision rate, we can make w*(0) = 1 in the transformed system by setting
C ¼ r1
K

mw2
0

� �2=5

: ð51Þ
The coefficient of restitution e is defined as the ratio of the absolute value of the relative collision velocity after collision to
that before collision, or
e � wf =w0

�� �� ¼ w
f
��� ���; ð52Þ
where subscripts 0 and f denote the values just before and just after the collision, respectively. The restitution coefficient e is
therefore affected only by the coefficient a in (49), since all other coefficients in both the governing equation and the initial
condition have been removed by scaling.

Eq. (48) is solved numerically using a fourth-order Runge–Kutta method with time step Dt = 0.0001. The solution for d*(t*)
is plotted in Fig. 7(a) for different values of the coefficient a. In each case, the overlap increases to some maximum value
d
 ¼ d
max at a time t
 ¼ t
max, and then decreases again to zero as the two particles rebound from each other. The scaled col-
lision rate w* is plotted for these same cases in Fig. 7(b). In Fig. 8, we plot the values of d
max, t
max and e ¼ w
f

��� ��� as functions of a.
To specify a for a given restitution coefficient e, we use a sixth-order polynomial fit the form
a ¼ 1:2728� 4:2783eþ 11:087e2 � 22:348e3 þ 27:467e4 � 18:022e5 þ 4:8218e6: ð53Þ
For a > 1.2728 the restitution coefficient is zero, and for a < 0.002 the restitution coefficient is within 0.4% of unity.

6.2. Normal collision with van der Waals Adhesion

Adding adhesion force to the two particle normal collision problem, Eq. (48) for dimensionless particle overlap d̂, defined
in (47), reduces to the system
d2d̂

dt̂2
þ 2ð21=4Þaâ1=2 dd̂

dt̂
þ 4ð21=2Þâ3½1� ðâ0=âÞ3=2� ¼ 0; d̂ ¼ 2â2 1� 2

3
ðâ0=âÞ3=2

� �
; ð54Þ
where â ¼ a=r1 and â0 ¼ a0=r1. Applying the transformation (49), with the transformation coefficient C given by (51) such
that w*(0) = 1 and letting a
 ¼ C1=2â, the system (54) has the same form as given above with â0 replaced by the parameter
a
0, defined by
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a
0 ¼
ffiffiffi
2
p 4ER3

3mw2
0

 !1=5
9pc
8ER

� �1=3

: ð55Þ
The only parameters in the system of equations for d* and a* are the dissipation coefficient a and the parameter a
0. The equa-
tion for a
0 can be written in terms of two dimensionless parameters:
k � ER3=mw2
0; / � c=ER: ð56Þ
The first parameter, k, is a ratio of elastic rebound force to the particle inertia, and the second parameter, /, is a ratio of
attractive van der Waals force to elastic rebound force. In terms of these parameters, (55) becomes a
0 ffi 2:28k1=5/1=3. A plot
of the critical values of a
0 for the particles to stick together is given in Fig. 9 as a function of the dissipation coefficient a. For
a
0 values greater than this critical value the particles will stick together with a
 ! a
0 at long time, whereas for a
0 less than
this critical value the particles will rebound from each other and eventually separate.

7. Particle migration and aggregation in circular pipe flow

In this section, we demonstrate the performance of the discrete-element method by examining the behavior of particles
advected in a circular pipe flow with a parabolic laminar velocity profile. The fluid velocity at the pipe center and the pipe
radius are used for the velocity and length scales, U and L, of the flow. The computational domain has length 4L with periodic
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Fig. 9. Plot showing the critical value of the dimensionless equilibrium contact region radius a
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as a function of the dissipation parameter a.
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boundary conditions at the two end planes. We use 5080 particles with effective radius R/L = 0.01, which are initially evenly
distributed within the pipe. The particle velocities are initialized to be the same as the fluid velocity, along with a random
perturbation with zero mean and maximum deviation equal to 0.5U. The particle bulk concentration is cbulk = 0.01, defined as
the ratio of the volume of particles to the total volume. The ratio of fluid-to-particle phase density is v = 0.01, the pipe flow
Reynolds number is ReF = UL/m = 3000, the particle Stokes number is St = 26.8, and the particle elasticity parameter is
k = 0.176. The particle restitution coefficient is set as e = 0.2, corresponding to damping coefficient a = 0.72. The flow is
evolved using a fluid time step UDt/L = 0.1, a particle time step DtP = 0.0263Dt, and a collision time step DtC = 0.00026 Dt
over a time interval from tU/L = (0,100). There are, therefore, 3838 collision time steps and 38 particle time steps for each
fluid time step. The second-order Adams–Bashforth method is used for stepping the particles forward in time. Computations
both with no adhesion and with van der Waals adhesion are reported. When performed on a standard Pentium 4 PC, the
computation with no adhesion requires 45 min and that with van der Waals adhesion requires about 17 h. The greatly in-
creased run time for the case with adhesive force is due to an increase in the number of particles that need to be evolved
with the collision time step from about 50 for the case with no adhesion to up to 4500 for the case with adhesion.

Particle migration in pipe flow with no adhesion has been examined by a number of investigators, and two primary mech-
anisms have been identified that lead to lateral migration of particles. The first of these mechanisms is due-to-particle iner-
tial effects, as incorporated in the lift and Magnus force terms discussed in Section 2 [18,36]. For a circular pipe flow, the
inertial forces cause the particles to be depleted from the pipe center and walls and to tend to collect near the radial location
r/L = 0.6. The second mechanism for particle lateral transport is the shear-induced migration that arises from particle–par-
ticle collisions in the presence of fluid shear. Leighton and Acrivos [27] showed that shear-induced migration causes particles
to tend to migrate from regions of high to low particle concentration and from regions of high to low particle shear stress.
Experimental studies of particle migration in a concentrated suspension are reported by Hampton et al. [15] and Han et al.
[16] for flow in a circular tube and by Koh et al. [24] for flow in a rectangular channel. These investigations note that whereas
the inertial force tends to concentrate particles in circular pipe flow midway between the pipe center and the wall, the
particle–particle collision forces tend to make the particles more concentrated in the low shear region near the pipe center.
For cases with small particle Reynolds number or high particle concentrations, the latter effect dominates and the particle
concentrate peaks at the pipe center, whereas for cases with both large particle Reynolds numbers and low concentrations, a
peak in particle concentration is observed near r/L = 0.6.

In computations with no adhesive force, the particle concentration field is averaged in both the axial and azimuthal
directions. The particle concentration field is initially nearly uniform with radius (as shown by the dashed line in Fig. 10),
but as the computations proceed the concentration becomes higher in a region near the pipe center spanning the radii
0.05 < r/L < 0.5 and lower in the outer region spanning the radii 0.5 < r/L < 1. An equilibrium configuration is approximately
achieved by the final time, for which the concentration profile peaks to about c = 0.03 at r/L = 0.2 and decreases to about
c = 0.008 at r/L = 0.95, before plunging to nearly zero at the wall. The concentration value at r = 0 tends to fluctuate signif-
icantly with time due to the small averaging volumes near the pipe center. The spatial fluctuations in Fig. 10 have typical
radial length scale of about 0.1, which is roughly ten times the grid size used for determination of the concentration field.
Comparison of computations performed both with and without the lift and Magnus forces indicate that the inertial forces
have a small effect on the computational results. Similarly, computations with different values of the restitution coefficient
and the elastic modulus indicate that the results are not sensitive to the values of these parameters.

The average number of particles involved in a collision ð�nCPÞ remains nearly constant at �nCP ¼ 2:02� 0:02 during the com-
putation, after a short initial transient. In Fig. 11, we plot the total number of particles involved in collisions (NCP) and the



Fig. 11. Variation of the number of particles in aggregates (NCP) and number of aggregates (NA) with time for a case with no adhesion force.
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Fig. 10. Concentration profile at times tU/L = 3 (dashed line) and tU/L = 100 (solid line) for particle flow in a pipe with no adhesion force.
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number of distinct aggregates (NA) formed from these colliding particles. Both of these measures exhibit a steady decline
during the computation as the average relative velocity between the particles and the surrounding fluid decreases.

The same computation is now performed with the addition of van der Waals adhesion. Particle capture by surfaces was
examined by Konstandopoulos [25] using a ‘‘frozen deposit” assumption coupled with a hard-sphere model for the particle
collisions. While this assumption may be appropriate for examining particle impact on a wall with no bulk fluid flow, in the
presence of a fluid flow bending and breakup of the wall-attached aggregates is important in regulating the particle capture
process.

The current computations are performed with dimensionless adhesion parameter / = 0.032. The average number of par-
ticles in an aggregate, plotted in Fig. 12(a), is found to increase from about 2.2 early in the computation to about 5.5 by the
end of the computation. The total number of particles involved in a collision (NCP), plotted in Fig. 12(b), increases steadily
during the computation, such that by tU/L = 100 approximately 80% of the particles are trapped in an aggregate. By contrast,
the number of aggregates (NA) quickly increases to about 700 and then remains fairly constant for the remainder of the com-
putation. The aggregate growth occurs both by capture of individual particles by aggregates and by collision of aggregates
with small number of particles to form larger aggregates. The distribution of particles within aggregates of different sizes can
be determined by plotting the total number of particles Na(nPA) contained within aggregates of size nPA, as shown in Fig. 13.
Most aggregates have relatively few particles (less than 10), but some aggregates are found with up to 60 particles.

Particle concentration and axial velocity profiles are shown in Fig. 14 at a time tU/L = 2 near the start of the computation
(dashed lines) and the final time (tU/L = 100). The particle concentration is initially approximately uniform across the pipe.
As the computation progresses, the particle concentration is found to attain a nearly constant value in a broad central region
0 < r/L < 0.8, which decreases gradually with time. The particle concentration increases rapidly within a near-wall region
0.8 < r/L < 1, with a peak in particle concentration at approximately r/L = 0.95. The spike in particle concentration near the
wall is an outcome of particles trapped in aggregates that are then captured by van der Waals adhesion to the wall. Unlike
the case with no adhesion, the particles trapped at the pipe wall generally exhibit no forward motion due to the rolling



Fig. 12. For case with van der Waals adhesion force: (a) average number of particles per aggregate ð�nCPÞ vs time; (b) total number of particles in an
aggregate (top) and number of aggregates (bottom) versus time.

Fig. 13. Total number of particles Na contained in aggregates with nPA particles for the case with adhesive force at time tU/L = 100.
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Fig. 14. Results for particle flow in a pipe with van der Waals adhesion force at times tU/L = 2 (dashed line) and tU/L = 100 (solid line): (a) concentration
profile and (b) particle velocity profile.
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resistance associated with the van der Waals adhesion, as given by (44). For instance, the average particle velocity is plotted
as a function of radius in Fig. 14(b) for a time close to the start of the computation and for the final time. Near the start of the
computation, the velocity profile approximately follows the parabolic profile of the fluid axial velocity, with some
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fluctuations that grow more pronounced near the pipe center. As the particle collect on the walls, however, the axial velocity
exhibits an increasing decline near the wall, such that by tU/L = 100 the particle axial velocity vanishes for r/L greater than
about 0.85.

In order to clearly visualize the processes involved in aggregation formation in channel and pipe flow, we have performed
a simulation for particle transport in a two-dimensional channel flow with van der Waals adhesion using the same param-
eter values as for the pipe flow computation reported above. A series of pictures showing the particle locations over a time
sequence spanning an interval (0, 10) in tU/L from is given in Fig. 15. The particles are initially evenly spaced within the chan-
nel. Shortly after start of the computation, particles start colliding within the channel to form aggregates consisting of a small
number of particles. These small aggregates collide with each other to form progressively larger aggregates. Some aggregates
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Fig. 15. Evolution of particle positions for a two-dimensional channel flow, showing development of aggregates and adhesion of aggregates to the channel
walls due to van der Waals force, at times tU/L = 0 through 10.



Fig. 16. Aggregation measures for two-dimensional channel flow with van der Waals adhesion: (a) time variation of total number of particles in an
aggregate (NCP), number of aggregates (NA), and average number of particles in an aggregate (�nCPÞ; (b) number of particles Na contained in aggregates of size
nPA at time tU/L = 35.
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near the walls become attached to the walls, forming fingerlike projections sticking out into the flow. Some of these project-
ing aggregates break off due to the imposed shear, leaving a part attached to the wall and a part that returns to the flow.
Other aggregates first project out into the flow and then bend via particle rolling to attach to the wall at several different
positions. As the aggregates near the wall tumble due to the imposed shear, they capture other particles from the flow
and transport them to the wall, such that by tU/L = 10 most of the particle are attached to the wall. As in the pipe flow case
discussed previously, most of the particles contained in the aggregate layer lining the walls settle to a state with zero veloc-
ity, so that they become trapped at the wall.

Information on aggregate formation in two-dimensional channel flow are shown in Fig. 16. We observe that the total
number of particles NCP that are contained in an aggregate increases rapidly during the computation, and by tU/L = 5 includes
nearly all particles. The number of aggregates increases in the very early part of the computation, peaks at about tU/L = 1.2,
and then steadily decreases during the remainder of the computation as aggregates collide with one another to form fewer,
larger aggregates. The average number of particles in an aggregate ð�nCPÞ increases throughout the computation. The number
of particles contained in an aggregate of size nPA is plotted in Fig. 16(b) at time tU/L = 35. We observe a distribution of aggre-
gate sizes, ranging between aggregates with 2–5 particles to aggregates with nearly 200 particles.

8. Conclusions

A discrete-element method (DEM) is presented for simulation of particulate aerosols which includes particle–particle col-
lisions and particle adhesion. The DEM is accelerated by implementation in the framework of a triple-time step algorithm,
consisting of a fluid time step, a particle time step, and a collision time step. The particle collision model consists of terms for
the normal elastic force on the particles, as well as forces and moments resisting particle sliding, rolling and twisting mo-
tions. Modifications to the collision forces and torques necessary to account for van der Waals adhesion are presented. Mod-
els for these forces and torques are designed based on a balance between desire to accurately describe the particle collision
physics and desire to facilitate rapid computation with large numbers of particles in both two and three dimensions. Cases
with normal collision of two particles are analyzed to develop the appropriate dimensionless parameters governing particle
collision and the relationship between the normal force dissipation coefficient and the particle coefficient of restitution. The
two particle collision cases are further used to examine conditions for two particle-to-stick or separate upon impact for dif-
ferent values of the restitution coefficient.

We demonstrate the capability of the method by examining both adhesive and non-adhesive particle transport in a pipe
and channel flow. For the non-adhesive case, the particle concentration field is higher near the pipe center and lower near
the walls due to the shear-induced migration effect, by which particle collisions in a shear flow cause particles to preferen-
tially collect in regions of low shear rate. For the cases with adhesion, particles form aggregates within the volume of the flow
which grow progressively larger as the aggregates collide with each other. A mechanism is described whereby aggregates
form fingerlike projections attached at one end to the wall, which sweep out into the flow, capturing particles from with
the main part of the flow and carrying them to the pipe wall. The fingerlike projects either break off or bend over to attach
to the wall at several points, thereby becoming firmly bound to the wall. As time proceeds, nearly all of the particles become
captured within these aggregates lining the wall. Because of the rolling resistance introduced by the van der Waals force,
these wall-attached aggregates generally do not roll, but remain fixed in a thick layer lining the pipe wall.

The computational method described in this paper has been extended by the authors for other adhesion forces, including
liquid bridging and receptor-ligand binding. It is desirable to extend the current computational model to apply to hydrosol
flows, such as occur in nanoparticle suspensions, cohesive sediment transport problems, and various biological cell adhesion
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and detachment problems. In order to extend the method to such problems, further research is necessary in order to develop
a model that can account for the effects of fluid forces on the elastically deformed particles during particle collisions, while
still retaining the high efficiency of the current computational method.
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